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The flexible inextensible magnetic rod model is applied for the study of bending and buckling deformations
of the paramagnetic particle chains linked by polymer molecules. It is shown that the existing experimental
results can be reasonably well described by this model which takes into account the normal magnetic forces
arising at chain bending deformation. By matching the experimentally observed shapes with our numerical
simulation results different physical properties of the linked paramagnetic particle chains are determined.
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I. INTRODUCTION

Flexible magnetic rods have been of great interest re-
cently [1–6]. It has been shown that flexible magnetic rods
may be employed as micromechanical sensors for probing
rigidity at molecular scale[5]. The bending rigidity of the
chains of magnetic particles linked by polymers was mea-
sured recently by applying deformation to the rod by laser
tweezers[6]. In respect of the obtained results it should be
mentioned that the curvature elasticity constants which were
determined in different sets of experiments—bending of the
rod and buckling of the rod under the compressional stress,
differ considerably—more than three times. As we illustrate
in the present paper, it can be interpreted by the action of the
magnetic force normal to the rod. To account for this force
we interpret the micromechanical data of the rod microman-
ipulation by the model of inextensible flexible magnetic rod
developed in Ref.[7]. By this model it was found that hair-
pin shapes of the rod are possible under the action of the
field [7]. This finding has been recently confirmed experi-
mentally [5]. In the present paper we are studying the influ-
ence of magnetic field on the dynamics and statics of the
flexible magnetic rod. We are able to describe by our model
the shapes observed in the bending and buckling experiments
of Ref. [6] and describe the relaxation dynamics of the mag-
netic particle chains observed in this work. By matching the
experimentally observed rod shapes under the action of the
applied force and magnetic field we have found the magnetic
permeability of the linked magnetic particles which have a
sandwichlike structure[6]. The model of the flexible mag-
netic rod and some analytical results concerning the dynam-
ics of the rod are given in Sec. II. Numerical simulation
results and their comparison with available experimental data
are given in Sec. III.

II. MODEL

The model of the flexible magnetic rod is developed in
Ref. [7]. It is based on the Kirchhoff model of an elastic rod

[8] extended by inclusion of the magnetic energy term to the
total energy of the rod:

E =
1

2
CE 1

R2dl −
2p2a2x2H0

2

m + 1
E shW · tW d2dl −E Ldl. s1d

HereR is the radius of the curvature of the centerline of the
rod, C is the curvature elasticity constant,a is the radius of
the rod considered as the cylinder,x is the magnetic suscep-
tibility m=1+4px, tW is the unit vector parallel to tangent of
the centerline and is given by its componentsscosq ,sin qd,
and the Lagrange multiplierL accounts for the local inex-
tensibility of the rod. Considering the variation of Eq.(1) at

the variation of the position of the centerlinerW8=rW+jW we
have

dE = fMdwg + fFtjtg + fFnjng −E Knjndl −E Ktjtdl.

s2d

Here, f g denotes the terms at the ends of the rod,jn andjt

are the components of the Lagrange displacement in the di-
rections of the normal and tangent to the centerline, respec-
tively, but dw=]jn/]l −jt /R is the angle of tangent rotation

at the Lagrange displacementsjW. Tangent and normal vectors
are connected according to the Frenet equationdtW/dl =

−1/RnW. Binormal is defined bybW =ftW3nWg. According to re-
lation (2), the following expressions for the components of

the body forceKW , stressesFW , and momentum stressesMW

=MbW are valid
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Ft = − S C
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As can be seen from the relations(3)–(7), in the magnetic
field additional forceFn8= f2p2a2x2H0

2sins2qdg/m+1 nor-
mal to the rod appears as required by the momentum balance

dMW

dl
+ ftW 3 FW g + TW0 = 0W , s8d

where TW0=−f2px2H0
2sins2qdpa2g /m+1bW is the torque per

unit length due to the applied field.
In the simplest case of the Rouse dynamics[9] for the

velocity of the centerline we have

zvW = KW .

Herez is the friction coefficient of the chain per unit length.
Accounting for the inextensibility of the rod

] vt

] l
+ vn

1
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= 0 s9d

and the relation for the tangent angle change[7]

] q

] t
=
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] l
−
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R
, s10d

the following set of dimensionless equations for the tangent
angleq and tension in the rodL are obtained:

qt = − Sqllll +
1

2
sql

3dlD − sulLdl − Llql + Cmfsins2qdgll

− Cmsqld2 sin 2q, s11d

ul
2L − Lll = − qlSqlll +

1

2
ql

3D + Cm ql
22 coss2qd

+ Cmfql sins2qdgl . s12d

Here the dimensionless variables are introduced scaling the
length withL (2L is the length of the rod), time with zL4/C.
The magnetoelastic number characterizing the ratio of mag-
netic and elastic forces is introduced according to the relation

Cm =
2px2H0

2pa2L2

sm + 1dC
.

On the basis of Eqs.(11) and (12) in Ref. [10], the dy-
namics of the free rod in the rotating magnetic field have
been studied. In the case of the rod with one end fixed, the
boundary conditions necessary for the solution of the set of
Eqs.(11) and(12) are a bit less trivial. To deduce these, Eq.

(11) is multiplied by −sinqeWx and cosqeWy and the obtained
results are added. Then, accounting for the condition of the
inextensibility, we obtain

]

] l

] rW

] t
=

]

] l
vW

and after integrating

] rW

] t
=
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z
KW . s13d

Thus, the boundary conditions for the set of Eqs.(11) and
(12) compatible with the condition of the fixed end atl =
−1 is

KW s− 1d = 0W . s14d

The boundary condition corresponding to the clamped end of
the rod is

qs− 1d = 0. s15d

For the free end we have

dq

dl
s+ 1d = 0, s16d

and

FW s+ 1d = FaeWy, s17d

whereFa is applied force scaled with respect toC/L2.
In the case of the small deformation of the rod, Eqs.(11)

and (12) can be considerably simplified. In this case, since
L=0 up to the second order small term, Eq.(11) reads

qt = − qllll + 2 Cmqll . s18d

Introducing q=yx for the displacement of the rody after
integrating Eq.(18) once we have

yt = − yxxxx+ 2 Cmyxx. s19d

The solution of Eq.(19) with boundary conditions corre-
sponding to the semi-infinite rod

− yxxxs0d = Fa,

yxxs0d = 0,

ys− `d = 0, s20d

and initial condition ysx,0d=0 can be easily found by
Laplace transformation. In the case Cm=0, the solution
reads

ysx,td =
1

2pi
E

g−i`

g+i` eptÎ2Fae
/1Î2p1/4x

p7/4 cosS 1
Î2

p1/4xDdp.

Finding the inverse transform forx=0 we have
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ys0,td =
Fa

Î2 t3/4

Gs7/4d
. s21d

The result given by relation(21) is used for the testing of the
numerical simulation results of the rod dynamics. The solu-
tion of Eq. (19) at CmÞ0 is more complex.

For the displacement of the end of rod in this case we
have

ys0,td =
1

2pi
E

g−i`

g+i`

3ept 2iFa
Îp − Cm

p2fsCm + iÎp − Cmd1/2 − sCm − iÎp − Cmd1/2g
dp.

s22d

III. NUMERICAL SIMULATION RESULTS

Equations (11) and (12) with boundary conditions
(14)–(17) are solved by the numerical algorithm described in
Refs. [7,10]. For the testing of the numerical simulation re-
sults the integral balance conditions for forces and torques
have been checked. Integrating relation(13) along the rod

and taking into account thatKW =dFW /dl gives the following
condition of the force balance:

FaeWy = FW s− 1d +E ] rW

] t
dl.

Similarly for the torque balance we have

E rW 3
] rW

] t
dl =E rW 3

dFW

dl
dl = rWs+ 1d 3 FaeWy −E ftW 3 FW gdl.

s23d

The last relation accounting for the torque balance Eq.(8)
gives

frWs+ 1d 3 FaeWyg +E TW0dl − MW s0d −E rW 3
] rW

] t
dl = 0W .

In the steady case, Eq.(19) for Cm=0 at the boundary
conditions at the free end −yxxxs1d=Fa and yxxs1d=0 and
boundary conditions at the fixed and clamped endys−1d=0;
yxs−1d=0 has the following solution[6]:

y = Fasx + 1d2 −
Fasx + 1d3

6
, s24d

which works for a small deformation of the rod. Relation
(24) was used for interpretation of the experimental results in
Ref. [6].

In Ref. [6] the bending of the flexible chain of the mag-
netic particles linked by the polymer molecules was studied
by applying the force to its free end by the laser tweezer. By
matching the experimentally observed shape of the rod with
the theoretical curve(24) in Ref. [6], the curvature elasticity
constantC has been determined. Since the experimental re-
sults are interpreted without taking into account normal force

Fn8, which diminishes the deformation of the rod, overesti-
mated curvature elasticity constant is obtained. To illustrate
this point, in Fig. 1 together with the experimental data[6],
the shapes of the flexible magnetic rod established in numeri-
cal simulation of the rod dynamics atF=0.15 and Cm=0 and
F=0.45 and Cm=0.9 are shown. We see that the experimen-
tal data shown in Fig. 5 of Ref.[6] for the chain linked with
polyethylene glycol with molecular weight 733(PEG 733)
can be reasonably well described by our model of flexible
magnetic rod, but with a three times larger dimensionless
force as we would have without taking into account the nor-
mal force. This gives an explanation as to why the elasticity
constant of the PEG 733 chain obtained in the bending ex-
periment is three times larger as found by buckling instabil-
ity in Ref. [6]. The value of the magnetoelastic number
Cm=0.9 matching the experimental data allows one to esti-
mate the magnetic permeability of the PEG 733 linked mag-
netic particles, which according to the technology of the
preparation have a sandwichlike structure. Due to this, the
magnetic susceptibility of the particles is not large and can
be calculated according to the formula

sm − 1d2 =
16CmC

H0
2a2L2 . s25d

Taking for C the value 1.1310−12 dyn cm2 found by the
buckling experiment of Ref.[6], a radius of particlea
=0.39mm, length of the chain 2L=41.2mm and a magnetic
field strength ofH0=300 Oe for the magnetic permeability
of the particles, we havem=1.16. This value seems to be
reasonable for the magnetic particles used in experiments
Ref. [6]. It should be noted that the value of magnetic per-
meability found gives some average magnetic property of the
chain, which evidently depends on the distance between par-
ticles determined by the linker molecules. In agreement with
this is the fact that the values of magnetic permeabilities
found for PEG 733 and PEG 3400 linked chains are different
and the higher value of magnetic permeability corresponds to

FIG. 1. Bending deformation of flexible magnetic chain. Nu-
merical simulation resultsF=0.15; Cm=0 (dashed line), F
=0.45; Cm=0.9(solid line), experimental data of Ref.[6] for the
PEG 733 linked chain are shown by filled circles.
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a shorter linker molecule. The experimental data shown in
Fig. 6 of Ref.[6] for chain linked with another polymer PEG
3400 and steady configurations found by the numerical simu-
lation of the rod dynamics for two casesF=1.1;Cm=0 and
F=1.6;Cm=0.33 are shown in Fig. 2. We see that the steady
configuration found accounting for the magnetic normal
force matches the experimental data very well as does the
configuration found without an accounting for magnetic nor-
mal force. This illustrates the point why the elasticity con-
stant found in Ref.[6] by the bending experiment is approxi-
mately 1.46 times larger than that found from the study of
chain buckling under the compression. The value of the mag-
netic permeability found in this case according to the relation
(25) taking 2L=25.6mm and for the elasticity constant the
value 2.2.10−14 dyn cm2 (see the discussion about this value
below) is smaller and equal to 1.022. We will return to this
estimate when considering the relaxation and buckling ex-
periments with PEG 3400 linked chain.

The chains linked by glutaraldehyde are stiffer. We were
able to match the chain shape shown in Fig. 9 of Ref.[6]
assuming that the chain shown in this figure has not achieved
its steady state. We see from Fig. 3 that nonsteady shape is
established at F=0.5; Cm=0 at dimensionless time
t=0.0972 matches the experimental one quite well; at least
better than the stationary shapes shown in Fig. 3 forF
=0.04 andF=0.06. Due to a possible uncertainty of the situ-
ation we have not attempted to estimate the magnetic perme-
ability for this case.

The next series of experiments described in Ref.[6] con-
sisted of the chain relaxation dynamics when the bending
force due to the optical trap was removed. Experimental data
together with the numerical simulation results for the dynam-
ics of the free end of the rod are shown in Figs. 4 and 5 for
PEG 733 and PEG 3400 linked chains, respectively. The Cm
values were taken equal to that found by matching the steady
shapes of the chains at bending experiments. Matching the
experimental data with our numerical simulation results al-
lowed us to determine the characteristic chain relaxation
time zL4/C, which in the two cases shown turned out to be

equal to 5 s for PEG 733 and 3.8 s for PEG 3400 linked
chains, respectively. The value of the elastic relaxation time
found allows us to estimate the curvature elasticity constant
of chains. If we take for the viscosity of the surrounding
liquid the value 10−1 P, then for the PEG 733 linked chain,
which is 41.2mm long we haveC=0.9310−12 dyn cm2, but
for the PEG 3400 linked chain, which is 25.6mm long we
have 1.97310−13 dyn cm2. The value of the elasticity con-
stant for the PEG 733 linked chain is close to that given in
Ref. [6]. The value of the elasticity constant obtained for the
PEG 3400 linked chain gives a larger value for the magnetic
permeability of the particles 1.068 than obtained above. Con-
cerning the relaxation dynamics of the magnetic chain, it is
rather important to note that the magnetic field can signifi-
cantly influence the relaxation dynamics. This can be illus-
trated by the study of the power law determining the free end
dynamics in the field. The linear fit of the numerical data for

FIG. 2. Bending deformation of flexible magnetic chain. Nu-
merical simulation resultsF=1.1; Cm=0 (dashed line), F
=1.6; Cm=0.33(solid line), experimental data of Ref.[6] for the
PEG 3400 linked chain are shown by filled circles.

FIG. 3. Bending deformation of flexible magnetic chain. Nu-
merical simulation resultsF=0.06; Cm=0 (steady configuration,
long dashed line); F=0.04; Cm=0 (steady configuration, short
dashed line); F=0.5; Cm=0;t=0.0972 (nonrelaxed shape, solid
line), experimental data of Ref.[6] for glutaraldehyde linked chain
are shown by filled circles.

FIG. 4. Relaxation dynamics due to curvature elasticity. Nu-
merical simulation resultsF=0; Cm=0.9, experimental data of Ref.
[6] for the PEG 733 linked chain are shown by filled circles.
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the initial stage of the rod dynamics in semilogarithmic co-
ordinates lnfys+1dg=at+b at Fa=0.15 and Cm=0 givesa
=0.74 andb=−1.48, which corresponds very well to the val-
ues found according to the theoretical relation(21). The
characteristic power lawt3/4 experimentally is observed
when studying the random Brownian motion of the passive
Brownian particles in the mesh formed by flexible rodlike
polymers [11,12]. It is interesting that the characteristic
power law in the magnetic field is different. The dependence
of the exponent for the free end dynamics on Cm found
numerically is shown in Fig. 6. It would be interesting to
follow this dependence by a study of the Brownian motion of
passive bead in the mesh formed by the magnetic particle
chains.

The third set of experiments described in Ref.[6] con-
cerns the buckling instability of the chain arising under the
action of compressional force. In the linear approximation
when the tension in the rodL is constant and equal to the
applied force, the equilibrium conditionKn=0 for the dis-
placement of rodysxd reads

− yxxxx− Lyxx + 2Cmyxx = 0. s26d

The boundary conditions at free and fixed ends areyxxs+1d
=0;ys+1d=0 andyxs−1d=0;ys−1d=0. Equation(26) at these
boundary conditions gives the eigenvalue problem for the
critical compression forceL=Fc in the following form:

tan−1sÎFc − 2Cmd − tansÎFc − 2Cmd =
1

ÎFc − 2Cm
,

s27d

which for the critical compression force givesFc=2 Cm
+2.2472. The corresponding eigenmode of the chain defor-
mation is

y = s1 − xdsinÎFc − 2Cm +
sinfÎFc − 2Cmsx − 1dg

cosÎFc − 2Cm
.

in the agreement with the experimental data[6] it describes
the nonsymmetrical shape arising at the chain buckling. An
interesting conclusion about the magnetic chain buckling is
the dependence of the critical compressional force on the
magnetoelastic number. Since the magnetic field strength
was kept constant in the only existing experimental investi-
gation[6], we do not have experimental verification of this at
the present time. It is interesting to note that the increase of
the critical force of the buckling instability with the charge of
the flexible rod was found in Ref.[13].

We were able to match the shape arising due to the buck-
ling instability, which was experimentally observed in Ref.
[6], by the shape found from the numerical simulations. To
carry out the numerical simulation we have kept the free end
on thex axis. For this the forceF' in y axis direction was
also applied. Its magnitude was found by the Newton method
solving the equationys+1,F'd=0. Force along thex axis Fi

was kept constant. The initial shape according to the found
eigenmode of the chain deformation is given by

FIG. 5. Relaxation dynamics due to curvature elasticity. Nu-
merical simulation resultsF=0; Cm=0.33, experimental data of
Ref. [6] for the PEG 3400 linked chain are shown by filled circles.

FIG. 6. Dependence of the power law of the free end dynamics
on the magnetoelastic number Cm. Filled circles show numerical
simulation data.

FIG. 7. Buckling instability of magnetic particle chain. Numeri-
cal simulation resultsFi=4.4; Cm=0.33(solid line); Fi=4.4; Cm
=0.0 (dashed line), experimental data of Ref.[6] for the PEG 3400
linked chain are shown by filled circles.
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q = 0.15FÎFc − 2Cm cosfÎFc − 2Cmsx − 1dg

cosÎFc − 2Cm

− sinÎFc − 2CmG .

The numerical simulation results for the steady shape of flex-
ible rod at Cm=0.33 and compressional forceFi=4.4 are
shown in Fig. 7. The value ofF' found for steady configu-
ration is 2.53. We see that the configuration found matches
the shape experimentally observed in Ref.[6] rather well. To
illustrate the magnetic field effect in Fig. 7 the shape of the
rod for the same compressional forceFi but Cm=0 is shown.
We see that the application of the magnetic field diminishes
the buckling of the rod. The value of dimensionless force
5.08 found for the buckling deformation matching the ex-
perimentally observed shape and the value of the force
2.2 pN applied by the laser tweezer allows us to estimate the
curvature elasticity constant of the PEG 3400 linked chain
C=4.09310−14 dyn cm2. This value and the value of the
magnetoelastic number Cm=0.33 for the magnetic perme-
ability of the chain with length 2L=19.43mm gives

1.041—a value slightly larger than found from the bending
experiments.

IV. CONCLUSION

We have shown by analytical and numerical investiga-
tions that the model of inextensible flexible magnetic rod
describes rather well the existing experimental data for the
chains of paramagnetic particles linked with different poly-
mers. Accounting for the force normal to rod arising at the
deformation of the magnetic chain in the applied field leads
to several predictions—dependence of the threshold for
buckling transition on the magnetic field strength, depen-
dence of the chain deformation rate on the magnetic field
strength, and others, which may be verified in future experi-
ments. Rather interesting is the possibility of applying the
model of flexible magnetic rod for the determination of the
elastic properties of the linker molecules.
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